Automated Reasoning

6

6.1 Automated theorem proving
6.2 Forward and backward chaining
6.3 Resolution
6.4 Model checking+

A brief history of reasoning

Automated reasoning: reasoning completely automatically by computer programs

450B.C.	Stoics	propositional logic
322B.C.	Aristotle	syllogisms (inference rules), quantifiers
1565	Cardano	probability theory (propositional logic + uncertainty)
1847	Boole	propositional logic (again)
1879	Frege	first-order logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	complete algorithm for FOL
1930	Herbrand	complete algorithm for FOL (reduce to propositional)
1931	Gödel	incomplete algorithm for arithmetic
1960	Davis/Putnam "practical" algorithm for propositional logic	
1965	Robinson	"practical" algorithm for FOL—resolution

Automated theorem proving

Automated theorem proving (ATP): proving (mathematical) theorems by computer programs

Proof methods divide into (roughly) two kinds
Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
Inference rules include

- forward chaining, backward chaining, resolution

Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., DPLL algorithm heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Proofs

Sound inference: find α such that $K B \vdash \alpha$ Proof process is a search, operators are inference rules

Modus Ponens (MP)

$$
\frac{\alpha, \quad \alpha \Rightarrow \beta}{\beta} \quad \frac{A t(\text { lin }, p k u) \quad A t(\text { lin }, p k u) \Rightarrow O k(\text { lin })}{O k(\text { lin })}
$$

And-Introduction (AI)

$$
\frac{\alpha \beta}{\alpha \wedge \beta} \quad \frac{O k(\operatorname{lin}) \text { AImajor }(\operatorname{lin})}{O k(\text { Lin }) \wedge \text { AImajor }(\text { in })}
$$

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

$$
\frac{\forall v \alpha}{\operatorname{SuBST}(\{v / g\}, \alpha)}
$$

for any variable v and ground term g
E.g., $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$ yields

$$
\begin{aligned}
& \operatorname{King}(j o h n) \wedge G r e e d y(j o h n) \Rightarrow \operatorname{Evil}(j o h n) \\
& \operatorname{King}(\text { richard }) \wedge \operatorname{Greedy}(\text { richard }) \Rightarrow \text { Evil }(\text { richard }) \\
& \operatorname{King}(\text { father }(\text { john })) \wedge \operatorname{Greedy}(\text { father }(\text { john })) \Rightarrow \operatorname{Evil}(\text { father }(\text { john }))
\end{aligned}
$$:

Existential instantiation (EI)

c For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$
\frac{\exists v \alpha}{\operatorname{SuBST}(\{v / k\}, \alpha)}
$$

E.g., $\exists x \operatorname{Crown}(x) \wedge O n H e a d(x, j o h n)$ yields

$$
\text { Crown }(c) \wedge \text { OnHead }(c, \text { john })
$$

provided c is a new constant symbol, called a Skolem constant
Another example: from $\exists x d\left(x^{y}\right) / d y=x^{y}$ we obtain

$$
d\left(e^{y}\right) / d y=e^{y}
$$

provided e is a new constant symbol

Instantiation

UI can be applied several times to add new sentences; the new KB is logically equivalent to the old

El can be applied once to replace the existential sentence; the new KB is not equivalent to the old, but is satisfiable iff the old KB was satisfiable

Example: a proof

bob is a buffalo pat is a pig	1. Buffalo(bob)
Buffaloes outrun pigs	2. Pigpat $)$ 3. $\forall x, y$ Buffalo $(x) \wedge \operatorname{Pig}(y) \Rightarrow \operatorname{Faster}(x, y)$ bob outruns pat UE 3, $\{x / b o b, y /$ pat $\}$

Example: a proof

Example: a proof

UE 3, $\{x / b o b, y / p a t\}$	5. Buffalo $(b o b) \wedge \operatorname{Pig}(p a t) \Rightarrow$ Faster $(b o b, p a t)$

Example: a proof

MP 6 \& 7	6. Faster (bob, pat)

Search with inference rules

Operators are inference rules

States are sets of sentences

 Goal test checks state to see if it contains a query sentence

AI, UE, MP are common inference patterns
Problem: branching factor huge, esp. for UE
Idea: find a substitution that makes the rule premise match some known facts
\Rightarrow a single, more powerful inference rule

Forward and backward chaining

Modus Ponens (for Horn Form): complete for Horn KBs

$$
\frac{\alpha_{1}, \ldots, \alpha_{n}, \quad \alpha_{1} \wedge \cdots \wedge \alpha_{n} \Rightarrow \beta}{\beta}
$$

Can be used with forward chaining or backward chaining These algorithms are very natural and run in linear time

Clause form

Clause Form (restricted)
$K B=$ conjunction of clauses (CNF)
Recall: Clause $=$ disjunction of literals

- proposition symbol; or
- (conjunction of symbols) \Rightarrow symbol (i.e., conjunction of literals)

$$
\begin{aligned}
& \text { E.g., } C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B) \\
& \text { i.e., } C \wedge(\neg B \vee A) \wedge(\neg C \vee \neg D \vee B)
\end{aligned}
$$

Horn clause $=$ a clause in which at most one is positive literal
Definite clause $=$ a clause in which exactly one is positive literal all definite clauses are Horn clauses

Goal clauses $=$ clauses with no positive literals

Forward chaining

FC Idea: fire any rule whose premises are satisfied in the $K B$ add its conclusion to the $K B$, until query is found

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example: forward chaining

Forward chaining algorithm

def PL-FC-Ask $(K B, q)$

inputs: $K B$, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol
count \leftarrow a table, where count $[c]$ is the number of symbols in c^{\prime} s premise
inferred \leftarrow a table, where inferred $[s]$ is initially false for all symbols queue \leftarrow a queue of symbols, initially symbols known to be true in $K B$
while queue is not empty do // not yet processed
$p \leftarrow \operatorname{POP}(q u e u e)$
if $p=q$ then return true
if inferred $[p]=$ false then
inferred $[p] \leftarrow$ true
for each clause c in $K B$ where p is in c.Premise do//implication decrement count $[c]$ if count $[c]=0$ then add c. Conclusion to queue
return false

Completeness*

FC derives every atomic sentence that is entailed by Horn $K B$

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original $K B$ is true in m

Proof: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b$ is false in m
Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in m and b is false in m
Therefore the algorithm has not reached a fixed point
4. Hence m is a model of $K B$
5. If $K B \models q, q$ is true in every model of $K B$, including m

Idea: construct any model of $K B$ by sound inference, check α

Backward chaining

BC Idea: work backwards from the query q
to prove q by BC
check if q is known already, or prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1) has already been proved true, or
2) has already failed

Algorithm: PL-BC-Ask?
(ref. FOL-BC-Ask in later)

Example: backward chaining

Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal
$B C$ is goal-driven, appropriate for problem-solving
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of $K B$

Incompleteness

Forward and backward chaining are complete for Horn KBs but incomplete for full FOL
E.g., from

$$
\begin{aligned}
& \operatorname{PhD}(x) \Rightarrow \operatorname{HighlyQualified}(x) \\
& \neg P h D(x) \Rightarrow \text { EarlyEarnings }(x) \\
& \operatorname{HighlyQualified}(x) \Rightarrow \operatorname{Rich}(x) \\
& \text { EarlyEarnings }(x) \Rightarrow \operatorname{Rich}(x)
\end{aligned}
$$

should be able to infer Rich(Me), but FC/BC won't do it Does a complete algorithm exist??

Resolution

- Propositional resolution
- Unification
- First-order resolution

Propositional resolution

Entailment in PL is decidable:
can prove that α if $K B \models \alpha$ or $K B \not \vDash \alpha$
Resolution is a refutation procedure:
to prove $K B \models \alpha$, show that $K B \wedge \neg \alpha$ is unsatisfiable
Resolution uses $K B, \neg \alpha$ in CNF
Resolution inference rule combines two clauses to make a new one

C is called a resolvent of input clauses C_{1}, C_{2}
Inference continues until an empty clause $\}$ is derived (contrad.)

Resolution

Resolution inference rule (for CNF): complete for propositional logic

$$
\begin{aligned}
& \ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n} \\
& \ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n} \\
& \text { where } \ell_{i} \text { and } m_{j} \text { are complementary literals. E.g., } \\
& \frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
\end{aligned}
$$

Resolution\#

Given a clause of the form $\ell_{1} \vee \cdots \vee \ell_{k}$ containing some literal ℓ_{i}, and a clause of the form $m_{1} \vee \cdots \vee m_{n}$ containing some literal m_{j}, where ℓ_{i} and m_{j} are complementary literals, infer the clause consisting of those literals in the first clause other than ℓ_{i} and those in the second other than m_{j}, i.e.,
$\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}$
which is a resolvent of the two input clauses w.r.t. ℓ_{i} and m_{j}
A resolution derivation (or proof) of a clause c from a set of clauses S is a sequence of clauses c_{1}, \cdots, c_{n}, where the last clause, c_{n}, is c, and where each c_{i} is either an element of S or a resolvent of two earlier clauses in the derivation
write $S \vdash_{i} c$ (i is resolution, hereafter simply $\left.\vdash\right)$
if there is a derivation of c from S
write $\} \vdash c$, simply $\vdash c$, called c is a theorem

Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution algorithm

Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable

```
def PL-Resolution( KB, \alpha)
    inputs: }KB\mathrm{ , the knowledge base, a sentence in propositional logic
                \alpha, the query, a sentence in propositional logic
    clauses }\leftarrow\mathrm{ the set of clauses in the CNF representation of KB ^ᄀ人
    new}\leftarrow{
    while true do
        for each C}\mp@subsup{C}{i}{},\mp@subsup{C}{j}{}\mathrm{ in clauses do
            resolvents}\leftarrow\textrm{PL}-\textrm{Resolve}(\mp@subsup{C}{i}{},\mp@subsup{C}{j}{}
        if resolvents contains the empty clause then return true
        new}\leftarrow\mathrm{ new }\cup\mathrm{ resolvents
        if new\subseteq clauses then return false //unsatisfiable
        clauses}\leftarrow\mathrm{ clauses }\cup\mathrm{ new
```


Example: resolution

Note: need only convert $K B$ to CNF once

- can handle multiple queries with same $K B$
- after addition of new fact α, can simply add new clauses α^{\prime} to KB

Derivation and entailment*

Claim: resolvent is entailed by input clauses
Proof: Suppose $m \models p \vee \alpha$ and $m \models \neg p \vee \beta$
Case 1: $m \models p$

$$
\text { then } m \models \beta \text {, so } m \models(\alpha \vee \beta)
$$

Case 2: $m \not \vDash p$

$$
\text { then } m \models \beta \text {, so } m \models(\alpha \vee \beta)
$$

Either way, $m \models(\alpha \vee \beta)$

$$
\{(p \vee \alpha),(\neg p \vee \beta)\} \models(\alpha \vee \beta)
$$

Special case: c and $\neg c$ resolve to $\}$
i.e., $\{c, \neg c\}$ is unsatisfiable

Derivation and entailment*

Can extend the previous argument to derivations
If $K B \vdash c$ then $K B \models c$
Proof: by induction on the length of the derivation
Show (by looking at the two cases) that $K B \models c_{i}$
But the converse does not hold in general
Can have $K B \models c$ without having $K B \vdash c$
E.g., $\neg p \models \neg p \vee \neg q$
but no derivation
Note: resolution is sound but not complete in general

Soundness and completeness of resolution

Theorem: i (resolution) is sound and refutation complete if
$K B \vdash_{i} \alpha$ iff $K B \models \alpha$
A set of clauses is unsatisfiable iff
the resolution closure of those clauses contains the empty clause

- provides method for determining satisfiability: search all derivations for $\}$
- so provides a method for determining all entailments

Proof of soundness

- Consider the complementary literals ℓ_{i}, m_{j}, easy to check

Completeness*

Resolution closure $R C(S)$ (of a set of clauses S) denotes the set of all clauses derivable by resolution; $R C(S)$ must be finite

1. Consider the contrapositive: if the closure $R C(S)$ does not contains the empty clause, then S is satisfiable
2. Construct a model for S with suitable truth values for the symbols P_{1}, \cdots, P_{k} that appear in S :

For i from 1 to k

- If a clause in $R C(S)$ contains $\neg P_{i}$ and all its other literals are false under the assignment chosen for P_{1}, \cdots, P_{i-1}, then assign false to P_{i}
- Otherwise, assign true to P_{i}

3. This assignment to P_{1}, \cdots, P_{k} is a model of S

Proof by contradiction: at some stage i in the sequence, assigning symbol P_{i} causes some clause C to become false

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $G r e e d y(x)$ match $\operatorname{King}(j o h n)$ and Greedy (y)
$\theta=\{x / j o h n, y / j o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows $($ john,$x)$	Knows $($ john, jane $)$	
Knows $($ john,$x)$	Knows $(y$, lin $)$	
Knows $($ john,$x)$	Knows $(y$, mother $(y))$	
Knows (john, $x)$	Knows $(x$, lin $)$	

Unification

We can get the inference immediately if we can find a substitution θ s.t. $\operatorname{King}(x)$ and $G r e e d y(x)$ match $\operatorname{King}(j o h n)$ and Greedy (y)
$\theta=\{x / j o h n, y / j o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows $($ john,$x)$	Knows $($ john, jane $)$	$\{x /$ jane $\}$
Knows (john,$x)$	Knows $(y, l i n)$	
Knows $($ john,$x)$	Knows $(y$, mother $(y))$	
Knows (john, $x)$	Knows $(x$, lin $)$	

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $G r e e d y(x)$ match King(john) and Greedy (y)
$\theta=\{x / j o h n, y / j o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows $($ john,$x)$	Knows $($ john, jane $)$	$\{x /$ jane $\}$
Knows $($ john,$x)$	Knows $(y$, lin $)$	$\{x /$ lin, $y /$ john $\}$
Knows $($ john,$x)$	Knows $(y$, mother $(y))$	
Knows (john,$x)$	Knows $(x$, lin $)$	

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $G r e e d y(x)$ match $\operatorname{King}(j o h n)$ and $G r e e d y(y)$
$\theta=\{x / j o h n, y / j o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(john, x)	Knows(john, jane)	\{x/jane $\}$
Knows(john, x)	Knows(y, lin)	$\{x / l i n, y /$ john $\}$
Knows(john, x)	Knows(y, mother(y))	$\{y /$ john, $x /$ mother $($ john $)\}$
Knows(john, x)	Knows(x,lin)	

Unification

We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $G r e e d y(x)$ match $\operatorname{King}(j o h n)$ and Greedy (y)
$\theta=\{x / j o h n, y / j o h n\}$ works
$\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

Standardizing apart eliminates overlap of variables, e.g., Knows(z, lin)

Most general unifiers

θ is a most general unifier (MGU, written as Unify) of literals l_{1} and l_{2} iff

1. θ unifies l_{1} and l_{2}
2. for any other unifier θ^{\prime}, there is a another substitution θ^{*} s.t. $\theta^{\prime}=\theta \theta^{*}$
where $\theta \theta^{*}$ requires applying θ^{*} to terms in θ
E.g., $P(g(x), f(x), z), \neg P(y, f(w), a)$
an MGU is

$$
\theta=\{\mathrm{x} / \mathrm{w}, \mathrm{y} / \mathrm{g}(\mathrm{w}), \mathrm{z} / \mathrm{a}\}
$$

Theorem: Can limit search to most general unifiers only without loss of completeness

There is a better linear algorithm

Algorithm of computing MGUs

Given a set of literals $\left\{l_{i}\right\}$ (usually only two literals)

1. Start with $\theta:=\{ \}$.
2. If all the $\alpha \theta$ are identical, then done; otherwise, get disagreement set, DS

$$
\text { e.g } P(a, f(a, g(z)), P(a, f(a, u), D S=\{u, g(z)\}
$$

3. Find a variable $v \in D S$, and a term $t \in D S$ not containing v; If not, fail.
4. $\theta:=\theta\{v / t\}$
5. Go to 2

There is a better linear algorithm

Generalized Modus Ponens (GMP)

$$
\begin{aligned}
& \frac{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta} \quad \text { where } p_{i}{ }^{\prime} \theta=p_{i} \theta \text { for all } i \\
& p_{1}{ }^{\prime} \text { is } \operatorname{King}(j o h n) \quad p_{1} \text { is } \operatorname{King}(x) \\
& p_{2}{ }^{\prime} \text { is } \operatorname{Greedy}(y) \quad p_{2} \text { is } \operatorname{Greedy}(x) \\
& \theta \text { is }\{x / j o h n, y / j o h n\} q \text { is } \operatorname{Evil}(x) \\
& q \theta \text { is Evil(john) }
\end{aligned}
$$

GMP used with KB of definite clauses (exactly one positive literal) All variables assumed universally quantified

Note: Need to replace all variables in its arguments of a rule with new ones that have not been used before
(variable renaming, Standardize-VARIABLES function).
Hint: Special interesting for rule-based systems

Soundness of GMP*

Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime}, \quad\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models q \theta
$$

provided that $p_{i}^{\prime} \theta=p_{i} \theta$ for all i
Lemma: For any definite clause p, we have $p \models p \theta$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \models\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2. $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime} \models p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime} \models p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
3. From 1 and 2, $q \theta$ follows by ordinary Modus Ponens

Example: a small KB

... it is a crime for an American to sell weapons to hostile nations American $(x) \wedge W$ eapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow$ Criminal(x)
Nono . . . has some missiles, i.e., $\exists x \operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)$ Owns(Nono, M_{1}) and Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West

```
    \forallx Missile(x)^Owns(Nono, x) => Sells(West, x, Nono)
```

Missiles are weapons

$$
\text { Missile }(x) \Rightarrow \text { Weapon }(x)
$$

An enemy of America counts as "hostile"
$\operatorname{Enemy}(x$, America $) \Rightarrow \operatorname{Hostile}(x)$
West, who is American . .
American(West)
The country Nono, an enemy of America ...
Enemy(Nono, America)

Forward and backward chaining

Recall FC and BC in propositional level, and extend to first-order case
FC is data-driven
$B C$ is goal-oriented
the basis for logic programming, e.g., Prolog (More complications help to avoid infinite loops)

Two chainings: find any solution, find all solutions

Forward chaining algorithm ${ }^{\#}$

```
def FOL-FC-Ask(KB,\alpha)
    inputs: KB, a set of first-order definite clauses
            \alpha, the query (an atomic sentence)
    while true do
    new\leftarrow{} // The set of new sentences inferred on each iteration
    for each rule in KB do
    ( }\mp@subsup{p}{1}{}\wedge\ldots\wedge \mp@subsup{p}{n}{}=>q)\leftarrow\mathrm{ STANDARDIZE-VARIABLES(rule)
```



```
                for some p p
            q
            if q}\mp@subsup{q}{}{\prime}\mathrm{ does not unify with some sentence already in KB or new then
            add q}\mp@subsup{q}{}{\prime}\mathrm{ to new
            0\leftarrow\operatorname{UNiFY}(\mp@subsup{q}{}{\prime},\alpha)
            if }0\mathrm{ is not failure then return }
if new={} then returnto false
add new to KB
```


Forward chaining proof

Hint: can you notice that FOL-FC-Ask differs from PL-FC-Entail?

Forward chaining proof

Forward chaining proof

Properties of forward chaining

Sound and complete for first-order definite clauses (proof similar to propositional proof)

Datalog $=$ first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most $p \cdot n^{k}$ literals
Logica (logic+aggregation, Google 2021) compiles to SQL and run on Google BigQuery

May not terminate in general if α is not entailed
This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added literal
Matching itself can be expensive
Database indexing allows $O(1)$ retrieval of known facts e.g., query Missile (x) retrieves Missile $\left(M_{1}\right)$

Matching conjunctive premises against known facts is NP-hard
Forward chaining is widely used in deductive databases

Hard matching example

$$
\begin{aligned}
& \text { Diff(} w a, n t) \wedge \text { Diff(} w a, s a) \wedge \\
& \operatorname{Diff}(n t, q) \operatorname{Diff}(n t, s a) \wedge \\
& \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge \\
& \text { Diff(nsw,v) } \wedge \text { Diff(} n s w, s a) \wedge \\
& \text { Diff(v, sa) } \Rightarrow \text { Colorable () } \\
& \text { Diff(Red, Blue) Diff(Red, Green) } \\
& \text { Diff(Green, Red) Diff(Green, Blue) } \\
& \text { Diff(Blue, Red) Diff(Blue, Green) }
\end{aligned}
$$

Colorable () is inferred iff the CSP has a solution CSPs include 3SAT as a special case, hence matching is NP-hard

Backward chaining algorithm\#

```
def FOL-BC-Ask(KB, query)
    return FOL-BC-OR(KB, query, \{\}) //And-Or search
def FOL-BC-Or \((K B\), goal, \(\theta)\) // Or because querying goal by any rule
    for each rule in Fetch-Rules-For-Goal( \(K B\), goal) do
        \((l h s \Rightarrow r h s) \leftarrow\) Standardize-Variables \((r u l e)\)
        for each \(\theta^{\prime}\) in FOL-BC-And ( \(K B\), lhs, Unify (rhs, goal, \(\theta\) ) ) do
            yield \(\theta^{\prime} / /\) return by a generator for multiple substitutions
def FOL-BC-AND \((K B, g o a l, \theta) / /\) And because \(l h s\) is a list of conjuncts
    if \(\theta=\) failure then return
    else if Length \((\) goal \()=0\) then yield \(\theta\)
    else
        first,rest \(\leftarrow \operatorname{First}(\) goal \(), \operatorname{Rest}(\) goal \()\)
        for each \(\theta^{\prime}\) in \(\operatorname{FOL}-\operatorname{BC}-\operatorname{Or}(K B, \operatorname{Subst}(\theta\), first \(), \theta)\) do
            for each \(\theta^{\prime \prime}\) in FOL-BC- \(\operatorname{And}\left(K B\right.\), rest), \(\left.\theta^{\prime}\right)\) do
            yield \(\theta^{\prime \prime}\)
```


Example: backward chaining

Criminal(West)

Example: backward chaining

Properties of backward chaining

Depth-first recursive proof search: space is linear in the size of proof
Incomplete due to infinite loops
\Rightarrow fix by checking the current goal against every goal on the stack
Inefficient due to repeated subgoals (both success and failure)
\Rightarrow fix using caching of previous results (extra space!)
Widely used for logic programming

First-order resolution

$\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}$ where $\operatorname{UNIFY}\left(\ell_{i}, \neg m_{j}\right)=\theta$.
E.g.

$$
\begin{aligned}
& \neg \operatorname{Rich}(x) \vee U n h a p p y(x) \\
& \operatorname{Rich}(\operatorname{lin}) \\
& \quad \text { Unhappy }(\operatorname{lin})
\end{aligned}
$$

with $\theta=\{x /$ lin $\}$
Apply resolution steps to $C N F(K B \wedge \neg \alpha)$; complete for FOL

Conjunctive Normal Form

Any FOL KB can be converted to CNF

1. Replace $P \Rightarrow Q$ by $\neg P \vee Q$
2. Move \neg inwards, e.g., $\neg \forall x P$ becomes $\exists x \neg P$
3. Standardize variables apart, e.g., $\forall x P \vee \exists x Q$ becomes $\forall x P \vee$ $\exists y Q$
4. Move quantifiers left in order, e.g., $\forall x P \vee \exists x Q$ becomes $\forall x \exists y P \vee$ Q
5. Eliminate \exists by Skolemization (next slide)
6. Drop universal quantifiers
7. Distribute \wedge over \vee, e.g., $(P \wedge Q) \vee R$ becomes $(P \vee Q) \wedge(P \vee R)$

Skolemization

$\exists x \operatorname{Rich}(x)$ becomes $\operatorname{Rich}(c)$ where c is a new Skolem constant
More tricky when \exists is inside \forall
E.g., "Everyone has a heart"
$\forall x \cdot \operatorname{Person}(x) \Rightarrow \exists y \cdot \operatorname{Heart}(y) \wedge \operatorname{Has}(x, y)$
Incorrect:

$$
\forall x \quad . \operatorname{Person}(x) \Rightarrow H e a r t(H 1) \wedge H a s(x, H 1)
$$

Correct:
$\forall x . \operatorname{Person}(x) \Rightarrow H e a r t(H(x)) \wedge H a s(x, H(x))$
where H is a new symbol (Skolem function)
Skolem function arguments: all enclosing universally quantified variables

Conversion to CNF

Everyone who loves all animals is loved by someone:

$$
\forall x \cdot[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]
$$

1. Eliminate biconditionals and implications

$$
\forall x .[\neg \forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
$$

2. Move \neg inwards: $\neg \forall x, p \equiv \exists x \neg p, \quad \neg \exists x, p \equiv \forall x \neg p$

$$
\begin{aligned}
& \forall x .[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)] \\
& \forall x .[\exists y \neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)] \\
& \forall x .[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]
\end{aligned}
$$

Conversion to CNF

3. Standardize variables: each quantifier should use a different one

$$
\forall x .[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]
$$

4. Skolemize: a more general form of existential instantiation Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables

$$
\forall x .[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, f(x))] \vee \operatorname{Loves}(g(x), x)
$$

5. Drop universal quantifiers

$$
[\operatorname{Animal}(f(x)) \wedge \neg \operatorname{Loves}(x, f(x))] \vee \operatorname{Loves}(g(x), x)
$$

6. Distribute \wedge over \vee

$$
[\operatorname{Animal}(f(x)) \vee \operatorname{Loves}(g(x), x)] \wedge[\neg \operatorname{Loves}(x, f(x)) \vee \operatorname{Loves}(g(x), x)]
$$

Resolution derivation

To prove α

- negate it
- convert to CNF
- add to CNF KB
- infer contradiction
E.g., to prove Rich $(m e)$, add $\neg \operatorname{Rich}(m e)$ to the CNF KB

$$
\begin{aligned}
& \neg P h D(x) \vee \text { HighlyQualified }(x) \\
& \operatorname{PhD}(x) \vee \text { EarlyEarnings }(x) \\
& \neg \operatorname{HighlyQualified}(x) \vee \operatorname{Rich}(x) \\
& \neg \operatorname{EarlyEarnings}(x) \vee \operatorname{Rich}(x)
\end{aligned}
$$

Example: resolution derivation

Resolution derivation: definite clauses

```
\negAmerican(x) \vee \negWeapon(y) \vee ᄀ\operatorname{Sells}(x,y,z) \vee ᄀHostile(z) \vee Criminal(x)
```

\neg Criminal(West)

Completeness of resolution*

(Refutation) Completeness of resolution: If S is an unsatisfiable set of clauses, then the application of a finite number of resolution steps to S will yield a contradiction

Proof sketch

- If S is unsatisfiable, then there exists a particular set of ground instances of the clauses of S such that this set is also unsatisfiable (Herbrand's theorem)
- The ground resolution theorem is hold since propositional resolution is complete for ground sentences
- For any propositional resolution proof using the set of ground sentences, there is a corresponding first-order resolution proof using the first-order sentences from which the ground sentences were obtained (lifting lemma)

Answer predicates*

In full FOL, we have the possibility of deriving $\exists x P(x)$ without being able to derive $P(t)$ for any t

Solution: answer-extraction process

- replace query $\exists x P(x)$ by $\exists x(P(x) \wedge \neg A(x))$
where A is a new predicate symbol, called the answer predicate
- instead of deriving \{ \}, derive any clause containing just the answer predicate
- can always convert to and from a derivation of $\}$
E.g.,
$K B=\{\operatorname{Student}(j o h n), \operatorname{Student}(j a n e), H a p p y(j o h n)\}$
$Q=\exists x(\operatorname{Student}(x) \wedge \operatorname{Happy}(x))$
$A(j o h n)$, i.e., an answer is john

Hardness of resolution*

First-order resolution is not guaranteed to terminate
Propositional resolution is (determining if a set of clauses is satisfiable) NP-complete (Cook Theorem)

There are unsatisfiable clauses $\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$ s.t. the shortest derivation of $\left\}\right.$ contains on the order of 2^{n} clauses (Haken, 1985)

Implications

- full theorem-proving may be too difficult
- need to consider other options
- - giving control to user, e.g., procedural representations
- - less expressive languages
e.g., Horn clauses (such as Prolog), semantic Web, knowledge graph

Resolution strategies*

strategies: reduce redundancy

- e.g., mathematical theorem proving, where we care about specific formulas
- automated theorem proving (ATP)
study strategies for automatically proving difficult theorems
- Unit preference
- Set of support
- Input resolution
- Subsumption
- Linear resolution, etc.

Ref. Chang C\&Lee R, Symbolic Logic and Mechanical Theorem Proving, 2e, 1997

Model checking ${ }^{+}$

Two efficient algorithms for propositional theorem proving based on model checking

Backtracking

- DPLL (Davis-Putnam-Logemann-Loveland) algorithm: recursive, depth-first enumeration of possible models

Local search

- Similarly, Min-Conflicts for CSPs, using an evaluation function that counts the number of unsatisfied clauses

DPLL

DPLL: a complete backtracking algorithm

- improving TT-EnTAIL
- Early termination: a clause is true if any literal is true E.g., $(A \vee B) \wedge(A \vee C)$ is true if A is true, regardless B, C
- Pure symbol heuristic: a pure symbol appears with the same "sign" in all clauses
E.g., $(A \vee \neg B),(\neg B \vee \neg C),(C \vee A)$
A (only positive appears) and B are pure, C is impure A sentence has a model \rightarrow it has a model with the pure symbols assigned so as to make their literals true
- Unit clause heuristic: a unit clause with just one literal, with esp. clauses in which all literals but one are already assigned false
E.g., if $B=$ true , then $(\neg B \vee \neg C)$ simplifies to $\neg C$ assigning one unit clause can create another one (unit propagation)

DPLL algorithm ${ }^{\#}$

```
def DPLL-SATISFIABLE?(s)
    inputs: s, a sentence in propositional logic
    clauses }\leftarrow\mathrm{ the set of clauses in the CNF representation of }
    symbols }\leftarrow\mathrm{ a list of the proposition symbols in s
    return DPLL(clauses, symbols,[])
```

def DPLL(clauses, symbols, model)
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value \leftarrow Find-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P$, model $\cup\{P=$ value $\}$)
P, value \leftarrow Find-Unit-ClaUsE (clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P$, model $\cup\{P=$ value $\}$)
$P \leftarrow \operatorname{Finst}($ symbols) $;$ rest $\leftarrow \operatorname{REST}($ symbols)
return DPLL(clauses, rest, model $\cup\{P=$ value $\})$ or
DPLL(clauses, rest, model $\cup\{P=$ value $\}$)

Logic programming*

Computation as inference on logical KBs

Logic programming

1. Identify problem
2. Assemble information
3. Tea break
4. Encode information in KB
5. Encode problem instance as facts
6. Ask queries
7. Find false facts

Ordinary programming Identify problem
Assemble information
Figure out solution
Program solution
Encode problem instance as data
Apply program to data
Debug procedural errors

Should be easier to debug Capital(NewYork, US) than $x:=x+2$

Prolog*

Basis: backward chaining with Horn clauses + bells \& whistles Widely used in Europe, Japan (basis of 5th Generation prlinect) Compilation techniques \Rightarrow approaching a billion LIPS

Program $=$ set of clauses $=$ head $:-$ literal $_{1}, \ldots$ literal $_{n}$.

```
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
```

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is $\mathrm{Y} * \mathrm{Z}+3$
Closed-world assumption ("negation as failure")
e.g., given alive(X) :- not dead(X).
alive(joe) succeeds if dead (joe) fails

Example: Prolog program*

Depth-first search from a start state X
dfs(X) :- goal(X).
dfs(X) :- successor (X,S), dfs(S).
No need to loop over S: successor succeeds for each
Appending two lists to produce a third

```
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
query: append(A,B,[1,2]) ?
answers: A=[] B=[1,2]
    A=[1] B=[2]
    A=[1,2] B= []
```


Answer set programming (ASP)*

Rule
$a \leftarrow b_{1}, \ldots, b_{m}, \operatorname{not} c_{1}, \ldots, \operatorname{not} c_{n}$

- a (head), b_{i} and c_{j} (body) are atoms
- true, if all literals to the body are true: a non-negated literal b_{i} is true if it has a derivation, a negated one, not c_{j}, is true if the atom c_{j} does not have one

Programs: finite collections of rules

ASP vs. Prolog*

Prolog: programming language
Need to understand Prolog's evaluation strategy, SLD resolution with unification

- the order of rules in a Prolog program and of subgoals (literals) in rule bodies matters
- Prolog misses true declarativity

ASP: specifications (yet do not allow the programmer to control the search)

- more declarative: it is intuitive, requires less background in logic, and its semantics is robust to changes in the order of literals in rules and rules in programs
- the ground program is fixed and only the data component changes

Automated theorem provers

Stanford Resolution Prover/FOL: one of the most mature subfields of ATP

E-prover (E 2.3, github.com/eprover): one of the SOTA FOL /w equality prover

TPTP (Thousands of Problems for Theorem Provers) problem library
CADE ATP System Competition (CASC): a yearly competition of first-order systems

Proof assistant (interactive theorem prover): a software tool to assist with the development of formal proofs by human-machine collaboration

- LEAN, Coq, HOL, Isabelle, etc.

LEAN*

Input: a formal language for expressing math statements (definitions, axioms, conjectures, theorems, and constructions) in a humanreadable and machine-verifiable format

Proof assistant: LEAN serves as a proof assistant, allowing users to interactively develop and verify math proofs (correctness and consistency)

Automated reasoning: the resolution-based automated reasoning engine is used to automate the process of proof

Proof checking: The resolution-based proofs are checked for correctness and consistency

Output: Upon successful verification, LEAN provides formalized math theorems and constructions, along with their proofs, in a machineverifiable format

