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6 Automated Reasoning

6.1 Automated theorem proving

6.2 Forward and backward chaining

6.3 Resolution

6.4 Model checking+
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A brief history of reasoning

Automated reasoning: reasoning completely automatically by com-
puter programs

450b.c. Stoics propositional logic
322b.c. Aristotle syllogisms (inference rules), quantifiers
1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel complete algorithm for FOL
1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Gödel incomplete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for propositional logic
1965 Robinson “practical” algorithm for FOL—resolution
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Automated theorem proving

Automated theorem proving (ATP): proving (mathematical) theorems
by computer programs

Proof methods divide into (roughly) two kinds

Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
Inference rules include

– forward chaining, backward chaining, resolution
Model checking

truth table enumeration (always exponential in n)
improved backtracking, e.g., DPLL algorithm
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 6 4



Proofs

Sound inference: find α such that KB ⊢ α
Proof process is a search, operators are inference rules

Modus Ponens (MP)

α, α⇒ β

β

At(lin, pku) At(lin, pku)⇒ Ok(lin)

Ok(lin)

And-Introduction (AI)

α β

α ∧ β

Ok(lin) AImajor(lin)

Ok(Lin) ∧ AImajor(in)
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Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by
it:

∀ v α

Subst({v/g}, α)

for any variable v and ground term g

E.g., ∀ x King(x) ∧Greedy(x)⇒ Evil(x) yields

King(john) ∧Greedy(john)⇒ Evil(john)
King(richard) ∧Greedy(richard)⇒ Evil(richard)
King(father(john)) ∧Greedy(father(john))⇒ Evil(father(john))
...
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Existential instantiation (EI)

c For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

∃ v α

Subst({v/k}, α)

E.g., ∃ x Crown(x) ∧OnHead(x, john) yields

Crown(c) ∧OnHead(c, john)

provided c is a new constant symbol, called a Skolem constant

Another example: from ∃ x d(xy)/dy= xy we obtain

d(ey)/dy= ey

provided e is a new constant symbol
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Instantiation

UI can be applied several times to add new sentences;
the new KB is logically equivalent to the old

EI can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable
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Example: a proof

bob is a buffalo 1. Buffalo(bob)
pat is a pig 2. Pig(pat)
Buffaloes outrun pigs 3. ∀ x, y Buffalo(x) ∧ Pig(y)⇒ Faster(x, y)
bob outruns pat Buffalo(bob) ∧ Pig(pat)⇒ Faster(bob, pat)
UE 3, {x/bob, y/pat}
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Example: a proof

AI 1 & 2 4. Buffalo(bob) ∧ Pig(pat)
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Example: a proof

UE 3, {x/bob, y/pat} 5. Buffalo(bob) ∧ Pig(pat)⇒ Faster(bob, pat)
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Example: a proof

MP 6 & 7 6. Faster(bob, pat)

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 6 12



Search with inference rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains a query sentence

1  2  3

1  2  3  4

1  2  3  4  5

1  2  3  4  5  6

AI 1 & 2

UE 3 {x/Bob, y/Pat}

MP 5 & 6

AI, UE, MP are common inference patterns

Problem: branching factor huge, esp. for UE

Idea: find a substitution that makes the rule
premise match some known facts
⇒ a single, more powerful inference rule

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 6 13



Forward and backward chaining

Modus Ponens (for Horn Form): complete for Horn KBs

α1, . . . , αn, α1 ∧ · · · ∧ αn ⇒ β

β

Can be used with forward chaining or backward chaining
These algorithms are very natural and run in linear time

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 6 14



Clause form

Clause Form (restricted)
KB = conjunction of clauses (CNF)

Recall: Clause = disjunction of literals
• proposition symbol; or
• (conjunction of symbols) ⇒ symbol
(i.e., conjunction of literals)

E.g., C ∧ (B ⇒ A) ∧ (C ∧D ⇒ B)
i.e., C ∧ (¬B ∨ A) ∧ (¬C ∨ ¬D ∨ B)

Horn clause = a clause in which at most one is positive literal

Definite clause = a clause in which exactly one is positive literal
all definite clauses are Horn clauses

Goal clauses = clauses with no positive literals
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Forward chaining

FC Idea: fire any rule whose premises are satisfied in the KB
add its conclusion to the KB, until query is found

P ⇒ Q

L ∧M ⇒ P

B ∧ L⇒M

A ∧ P ⇒ L

A ∧ B ⇒ L

A

B

Q

P

M

L

BA
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Example: forward chaining

Q

P

M

L

BA

2 2

2

2

1
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Example: forward chaining
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Example: forward chaining
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Example: forward chaining
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Example: forward chaining
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Example: forward chaining
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Example: forward chaining
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Example: forward chaining
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Forward chaining algorithm

def PL-FC-Ask(KB, q)

inputs: KB, the knowledge base, a set of propositional definite clauses

q, the query, a proposition symbol

count← a table, where count[c] is the number of symbols in c‘s premise

inferred← a table, where inferred[s] is initially false for all symbols

queue← a queue of symbols, initially symbols known to be true in KB

while queue is not empty do // not yet processed

p←Pop(queue)

if p=q then return true

if inferred[p]=false then

inferred[p]← true

for each clause c in KB where p is in c.Premise do//implication

decrement count[c]

if count[c] = 0 then add c.Conclusion to queue

return false
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Completeness∗

FC derives every atomic sentence that is entailed by Horn KB

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final state as a model m, assigning true/false to
symbols

3. Every clause in the original KB is true in m
Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m
Then a1 ∧ . . . ∧ ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m

Idea: construct any model of KB by sound inference, check α
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Backward chaining

BC Idea: work backwards from the query q
to prove q by BC

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed

Algorithm: PL-BC-Ask?
(ref. FOL-BC-Ask in later)
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Example: backward chaining

Q

P

M

L

A B

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 6 28



Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Example: backward chaining
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Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB
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Incompleteness

Forward and backward chaining are complete for Horn KBs

but incomplete for full FOL
E.g., from

PhD(x)⇒ HighlyQualified(x)
¬PhD(x)⇒ EarlyEarnings(x)
HighlyQualified(x)⇒ Rich(x)
EarlyEarnings(x)⇒ Rich(x)

should be able to infer Rich(Me), but FC/BC won’t do it
Does a complete algorithm exist??
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Resolution

• Propositional resolution

• Unification

• First-order resolution
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Propositional resolution

Entailment in PL is decidable:
can prove that α if KB |= α orKB 6|= α

Resolution is a refutation procedure:
to prove KB |= α, show that KB ∧ ¬α is unsatisfiable

Resolution uses KB, ¬α in CNF
Resolution inference rule combines two clauses to make a new one

C

C1 C2

C is called a resolvent of input clauses C1, C2

Inference continues until an empty clause { } is derived (contrad.)
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Resolution

Resolution inference rule (for CNF): complete for propositional logic

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨mn

ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where ℓi and mj are complementary literals. E.g.,

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

P1,3 ∨ P2,2, ¬P2,2

P1,3
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Resolution#

Given a clause of the form ℓ1∨· · ·∨ℓk containing some literal ℓi, and
a clause of the form m1∨· · ·∨mn containing some literal mj, where
ℓi and mj are complementary literals, infer the clause consisting of
those literals in the first clause other than ℓi and those in the second
other than mj, i.e.,

ℓ1∨· · ·∨ℓi−1∨ℓi+1∨· · ·∨ℓk∨m1∨· · ·∨mj−1∨mj+1∨· · ·∨mn

which is a resolvent of the two input clauses w.r.t. ℓi and mj

A resolution derivation (or proof) of a clause c from a set of clauses
S is a sequence of clauses c1, · · · , cn, where the last clause, cn, is
c, and where each ci is either an element of S or a resolvent of two
earlier clauses in the derivation

write S ⊢i c (i is resolution, hereafter simply ⊢)
if there is a derivation of c from S

write { } ⊢ c, simply ⊢ c, called c is a theorem
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Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α⇔ β with (α⇒ β) ∧ (β ⇒ α)

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1)⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α ∨ β

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∨ over ∧) and flatten

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)
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Resolution algorithm

Proof by contradiction, i.e., show KB ∧ ¬α unsatisfiable

def PL-Resolution(KB,α)

inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α

new←{}

while true do

for each Ci , Cj in clauses do

resolvents←PL-Resolve(Ci ,Cj )

if resolvents contains the empty clause then return true

new← new ∪ resolvents

if new ⊆ clauses then return false //unsatisfiable

clauses← clauses ∪ new

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 6 46



Example: resolution

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 α = ¬P1,2

P1,2

P1,2

P2,1

P1,2 B1,1

B1,1 P2,1 B1,1 P1,2 P2,1 P2,1

P1,2B1,1 B1,1

P1,2B1,1 P2,1B1,1P2,1 B1,1

P1,2 P2,1 P1,2

Note: need only convert KB to CNF once

• can handle multiple queries with same KB

• after addition of new fact α, can simply add new clauses α′ to
KB
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Derivation and entailment∗

Claim: resolvent is entailed by input clauses

Proof: Suppose m |= p ∨ α and m |= ¬p ∨ β
Case 1: m |= p

then m |= β, so m |= (α ∨ β)
Case 2: m 6|= p

then m |= β, so m |= (α ∨ β)
Either way, m |= (α ∨ β)

{(p ∨ α), (¬p ∨ β)} |= (α ∨ β)

Special case: c and ¬c resolve to { }
i.e., {c,¬c} is unsatisfiable
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Derivation and entailment∗

Can extend the previous argument to derivations

If KB ⊢ c then KB |= c
Proof: by induction on the length of the derivation

Show (by looking at the two cases) that KB |= ci
But the converse does not hold in general

Can have KB |= c without having KB ⊢ c
E.g., ¬p |= ¬p ∨ ¬q
but no derivation

Note: resolution is sound but not complete in general
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Soundness and completeness of resolution

Theorem: i (resolution) is sound and refutation complete if

KB ⊢i α iff KB |= α

A set of clauses is unsatisfiable iff
the resolution closure of those clauses contains the empty clause
– provides method for determining satisfiability: search all deriva-

tions for { }
– so provides a method for determining all entailments

Proof of soundness
– Consider the complementary literals ℓi,mj, easy to check
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Completeness∗

Resolution closure RC(S) (of a set of clauses S) denotes the set of
all clauses derivable by resolution; RC(S) must be finite
1. Consider the contrapositive: if the closure RC(S) does not con-
tains the empty clause, then S is satisfiable

2. Construct a model for S with suitable truth values for the symbols
P1, · · · , Pk that appear in S:

For i from 1 to k
– If a clause in RC(S) contains ¬Pi and all its other literals

are false under the assignment chosen for P1, · · · , Pi−1, then assign
false to Pi

– Otherwise, assign true to Pi

3. This assignment to P1, · · · , Pk is a model of S
Proof by contradiction: at some stage i in the sequence,

assigning symbol Pi causes some clause C to become false
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Unification

We can get the inference immediately if we can find a substitution θ
such thatKing(x) andGreedy(x)matchKing(john) andGreedy(y)

θ = {x/john, y/john} works

Unify(α, β) = θ if αθ= βθ

p q θ
Knows(john, x) Knows(john, jane)
Knows(john, x) Knows(y, lin)
Knows(john, x) Knows(y,mother(y))
Knows(john, x) Knows(x, lin)
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Unification

We can get the inference immediately if we can find a substitution θ
s.t. King(x) and Greedy(x) match King(john) and Greedy(y)

θ = {x/john, y/john} works

Unify(α, β) = θ if αθ= βθ

p q θ
Knows(john, x) Knows(john, jane) {x/jane}
Knows(john, x) Knows(y, lin)
Knows(john, x) Knows(y,mother(y))
Knows(john, x) Knows(x, lin)
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Unification

We can get the inference immediately if we can find a substitution θ
such thatKing(x) andGreedy(x)matchKing(john) andGreedy(y)

θ = {x/john, y/john} works

Unify(α, β) = θ if αθ= βθ

p q θ
Knows(john, x) Knows(john, jane) {x/jane}
Knows(john, x) Knows(y, lin) {x/lin, y/john}
Knows(john, x) Knows(y,mother(y))
Knows(john, x) Knows(x, lin)
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Unification

We can get the inference immediately if we can find a substitution θ
such thatKing(x) andGreedy(x)matchKing(john) andGreedy(y)

θ = {x/john, y/john} works

Unify(α, β) = θ if αθ= βθ

p q θ
Knows(john, x) Knows(john, jane) {x/jane}
Knows(john, x) Knows(y, lin) {x/lin, y/john}
Knows(john, x) Knows(y,mother(y)) {y/john, x/mother(john)}
Knows(john, x) Knows(x, lin)
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Unification

We can get the inference immediately if we can find a substitution θ
such thatKing(x) andGreedy(x)matchKing(john) andGreedy(y)

θ = {x/john, y/john} works

Unify(α, β) = θ if αθ= βθ

p q θ
Knows(john, x) Knows(john, jane) {x/jane}
Knows(john, x) Knows(y, lin) {x/lin, y/john}
Knows(john, x) Knows(y,mother(y)) {y/john, x/mother(john)}
Knows(john, x) Knows(x, lin) fail

Standardizing apart eliminates overlap of variables, e.g.,Knows(z, lin)
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Most general unifiers

θ is a most general unifier (MGU, written as Unify) of literals l1
and l2 iff

1. θ unifies l1 and l2
2. for any other unifier θ′, there is a another substitution θ∗ s.t.
θ′ = θθ∗

where θθ∗ requires applying θ∗ to terms in θ

E.g., P (g(x), f (x), z), ¬P (y, f (w), a)
an MGU is
θ={x/w, y/g(w), z/a}

Theorem: Can limit search to most general unifiers only without
loss of completeness

There is a better linear algorithm
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Algorithm of computing MGUs

Given a set of literals {li} (usually only two literals)

1. Start with θ := {}.

2. If all the αθ are identical, then done;
otherwise, get disagreement set, DS

e.g P (a, f (a, g(z)), P (a, f (a, u), DS = {u, g(z)}

3. Find a variable v ∈ DS, and a term t ∈ DS not containing v;
If not, fail.

4. θ := θ{v/t}

5. Go to 2

There is a better linear algorithm
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Generalized Modus Ponens (GMP)

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

qθ
where pi

′θ= piθ for all i

p1
′ is King(john) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/john, y/john} q is Evil(x)
qθ is Evil(john)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified

Note: Need to replace all variables in its arguments of a rule with
new ones that have not been used before

(variable renaming, Standardize-Variables function).

Hint: Special interesting for rule-based systems
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Soundness of GMP∗

Need to show that

p1
′, . . . , pn

′, (p1 ∧ . . . ∧ pn ⇒ q) |= qθ

provided that pi
′θ= piθ for all i

Lemma: For any definite clause p, we have p |= pθ by UI

1. (p1∧. . .∧pn ⇒ q) |= (p1∧. . .∧pn ⇒ q)θ= (p1θ∧. . .∧pnθ ⇒ qθ)

2. p1
′, . . . , pn

′ |= p1
′ ∧ . . . ∧ pn

′ |= p1
′θ ∧ . . . ∧ pn

′θ

3. From 1 and 2, qθ follows by ordinary Modus Ponens
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Example: a small KB

. . . it is a crime for an American to sell weapons to hostile nations
American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒

Criminal(x)
Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x)∧Missile(x)

Owns(Nono,M1) and Missile(M1)
. . . all of its missiles were sold to it by Colonel West
∀ x Missile(x) ∧Owns(Nono, x)⇒ Sells(West, x,Nono)

Missiles are weapons
Missile(x)⇒ Weapon(x)

An enemy of America counts as “hostile”
Enemy(x,America)⇒ Hostile(x)

West, who is American . . .
American(West)

The country Nono, an enemy of America . . .
Enemy(Nono,America)
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Forward and backward chaining

Recall FC and BC in propositional level, and extend to first-order case
FC is data-driven
BC is goal-oriented

the basis for logic programming, e.g., Prolog
(More complications help to avoid infinite loops)

Two chainings: find any solution, find all solutions
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Forward chaining algorithm#

def FOL-FC-Ask(KB,α)

inputs: KB, a set of first-order definite clauses

α, the query (an atomic sentence)

while true do

new←{} // The set of new sentences inferred on each iteration

for each rule in KB do

( p1 ∧ . . . ∧ pn ⇒ q)←Standardize-Variables(rule)

for each θ s.t. Subst(θ, p1 ∧ . . . ∧ pn)=Subst(θ, p
′
1 ∧ . . . ∧ p ′n)

for some p′1,. . . ,p
′
n in KB

q′←Subst(θ, q)

if q′ does not unify with some sentence already in KB or new then

add q′ to new

θ←Unify(q ′, α)

if θ is not failure then return θ

if new={} then returnto false

add new to KB
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Forward chaining proof

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Hint: can you notice thatFOL-FC-Ask differs fromPL-FC-Entail?
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Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1) Sells(West,M1,Nono)
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Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)
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Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime
KB)
FC terminates for Datalog in poly iterations: at most p · nk literals

Logica (logic+aggregation, Google 2021) compiles to SQL and run
on Google BigQuery

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable
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Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn’t added on iteration k − 1
⇒ match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M1)

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases
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Hard matching example

Victoria

WA

NT

SA

Q

NSW

V

T

Diff(wa, nt) ∧ Diff(wa, sa) ∧

Diff(nt, q)Diff(nt, sa) ∧

Diff(q, nsw) ∧ Diff(q, sa) ∧

Diff(nsw, v) ∧ Diff(nsw, sa) ∧

Diff(v, sa)⇒ Colorable()

Diff(Red,Blue) Diff(Red,Green)

Diff(Green,Red) Diff(Green,Blue)

Diff(Blue,Red) Diff(Blue,Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard
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Backward chaining algorithm#

def FOL-BC-Ask(KB, query)

return FOL-BC-Or(KB, query,{}) //And-Or search

def FOL-BC-Or(KB , goal , θ) // Or because querying goal by any rule

for each rule in Fetch-Rules-For-Goal(KB,goal) do

(lhs ⇒ rhs)←Standardize-Variables(rule)

for each θ′ in FOL-BC-And(KB , lhs ,Unify(rhs , goal , θ)) do

yield θ′ // return by a generator for multiple substitutions

def FOL-BC-And(KB , goal , θ) // And because lhs is a list of conjuncts

if θ = failure then return

else if Length(goal) = 0 then yield θ

else

first,rest←First(goal),Rest(goal)

for each θ′ in FOL-BC-Or(KB ,Subst(θ, first), θ) do

for each θ′′ in FOL-BC-And(KB , rest), θ′) do

yield θ′′
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Example: backward chaining

Criminal(West)
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Example: backward chaining

Criminal(West)

Weapon(y)American(x) Sells(x,y,z) Hostile(z)

{x/West}
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Example: backward chaining

Criminal(West)

Weapon(y) Sells(x,y,z) Hostile(z)

{x/West}

{ }

American(West)
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Example: backward chaining

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }

Sells(x,y,z) Hostile(z)

{x/West}
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Example: backward chaining

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }

Sells(x,y,z) Hostile(z)

 y/M1{ }

{x/West, y/M1}
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Example: backward chaining

Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ }

{ } z/Nono{ }

Hostile(z)

{x/West, y/M1, z/Nono}
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Example: backward chaining

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ } { }{ }{ }

{ } z/Nono{ }

{x/West, y/M1, z/Nono}
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Properties of backward chaining

Depth-first recursive proof search: space is linear in the size of proof

Incomplete due to infinite loops
⇒ fix by checking the current goal against every goal on the stack

Inefficient due to repeated subgoals (both success and failure)
⇒ fix using caching of previous results (extra space!)

Widely used for logic programming
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First-order resolution

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨mn

(ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)θ

where Unify(ℓi,¬mj) = θ.

E.g.
¬Rich(x) ∨ Unhappy(x)
Rich(lin)

Unhappy(lin)

with θ = {x/lin}

Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL
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Conjunctive Normal Form

Any FOL KB can be converted to CNF

1. Replace P⇒Q by ¬P∨Q
2. Move ¬ inwards, e.g., ¬∀xP becomes ∃x¬P
3. Standardize variables apart, e.g., ∀xP ∨ ∃xQ becomes ∀xP ∨
∃y Q
4. Move quantifiers left in order, e.g., ∀xP∨∃xQ becomes ∀x∃y P∨
Q
5. Eliminate ∃ by Skolemization (next slide)
6. Drop universal quantifiers
7. Distribute ∧ over ∨, e.g., (P ∧Q)∨R becomes (P ∨Q)∧(P ∨R)
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Skolemization

∃xRich(x) becomes Rich(c) where c is a new Skolem constant

More tricky when ∃ is inside ∀
E.g., “Everyone has a heart”
∀ x .Person(x)⇒ ∃ y .Heart(y) ∧Has(x, y)

Incorrect:
∀ x .Person(x)⇒ Heart(H1) ∧Has(x,H1)

Correct:
∀ x .Person(x)⇒ Heart(H(x)) ∧Has(x,H(x))

where H is a new symbol (Skolem function)

Skolem function arguments: all enclosing universally quantified vari-
ables
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Conversion to CNF

Everyone who loves all animals is loved by someone:
∀ x .[∀ y Animal(y)⇒ Loves(x, y)]⇒ [∃ y Loves(y, x)]

1. Eliminate biconditionals and implications

∀ x .[¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃ x ¬p, ¬∃ x, p ≡ ∀ x ¬p

∀ x .[∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]
∀ x .[∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
∀ x .[∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
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Conversion to CNF

3. Standardize variables: each quantifier should use a different one

∀ x .[∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables

∀ x .[Animal(F (x)) ∧ ¬Loves(x, f (x))] ∨ Loves(g(x), x)

5. Drop universal quantifiers

[Animal(f (x)) ∧ ¬Loves(x, f (x))] ∨ Loves(g(x), x)

6. Distribute ∧ over ∨

[Animal(f (x))∨Loves(g(x), x)]∧[¬Loves(x, f (x))∨Loves(g(x), x)]
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Resolution derivation

To prove α
– negate it
– convert to CNF
– add to CNF KB
– infer contradiction

E.g., to prove Rich(me), add ¬Rich(me) to the CNF KB

¬PhD(x) ∨HighlyQualified(x)
PhD(x) ∨ EarlyEarnings(x)
¬HighlyQualified(x) ∨Rich(x)
¬EarlyEarnings(x) ∨Rich(x)
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Example: resolution derivation

PhD(x) HQ(x)

>

PhD(x)

>

ES(x)

>

ES(x)Rich(x)

Rich(x) Rich(Me)

>

Rich(x)ES(x)

PhD(x)

>

Rich(x)

>

Rich(x)HQ(x)

{x/Me}

{ }

{ }

{ }

AI Slides 9e c©Lin Zuoquan@PKU 1998-2024 6 85



Resolution derivation: definite clauses

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

Criminal(x)Hostile(z)

L

Sells(x,y,z)

L

Weapon(y)

L

American(x)

L > > > >

Weapon(x)Missile(x)

L >

Sells(West,x,Nono)Missile(x)

L

Owns(Nono,x)

L> >

Hostile(x)Enemy(x,America)

L >

Sells(West,y,z)

L

Weapon(y)

L

American(West)

L > >

Hostile(z)

L>

Sells(West,y,z)

L

Weapon(y)

L >

Hostile(z)
L>

Sells(West,y,z)

L>

Hostile(z)

L>L

Missile(y)

Hostile(z)

L>L

Sells(West,M1,z)

> > L

Hostile(Nono)
L

Owns(Nono,M1)

L

Missile(M1)

> L

Hostile(Nono)

L

Owns(Nono,M1)
L

Hostile(Nono)

Criminal(West)

L
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Completeness of resolution∗

(Refutation) Completeness of resolution: If S is an unsatisfiable set
of clauses, then the application of a finite number of resolution steps
to S will yield a contradiction

Proof sketch

– If S is unsatisfiable, then there exists a particular set of ground
instances of the clauses of S such that this set is also unsatisfiable
(Herbrand’s theorem)

– The ground resolution theorem is hold since propositional
resolution is complete for ground sentences

– For any propositional resolution proof using the set of ground
sentences, there is a corresponding first-order resolution proof using
the first-order sentences from which the ground sentences were ob-
tained (lifting lemma)
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Answer predicates∗

In full FOL, we have the possibility of deriving ∃xP (x) without being
able to derive P (t) for any t

Solution: answer-extraction process
– replace query ∃xP (x) by ∃x(P (x) ∧ ¬A(x))
where A is a new predicate symbol, called the answer predicate
– instead of deriving { }, derive any clause containing just the

answer predicate
– can always convert to and from a derivation of { }

E.g.,
KB = {Student(john), Student(jane), Happy(john)}
Q = ∃x(Student(x) ∧Happy(x))

A(john), i.e., an answer is john
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Hardness of resolution∗

First-order resolution is not guaranteed to terminate

Propositional resolution is (determining if a set of clauses is satisfi-
able) NP-complete (Cook Theorem)

There are unsatisfiable clauses {c1, c2, · · · , cn} s.t. the shortest
derivation of { } contains on the order of 2n clauses (Haken, 1985)

Implications
– full theorem-proving may be too difficult
– need to consider other options
– – giving control to user, e.g., procedural representations
– – less expressive languages
e.g., Horn clauses (such as Prolog), semantic Web, knowledge

graph
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Resolution strategies∗

strategies: reduce redundancy
– e.g., mathematical theorem proving, where we care about spe-

cific formulas
– automated theorem proving (ATP)
study strategies for automatically proving difficult theorems

• Unit preference

• Set of support

• Input resolution

• Subsumption

• Linear resolution, etc.

Ref. Chang C&Lee R, Symbolic Logic and Mechanical Theorem Prov-

ing, 2e, 1997
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Model checking+

Two efficient algorithms for propositional theorem proving based on
model checking

Backtracking
– DPLL (Davis-Putnam-Logemann-Loveland) algorithm: recur-

sive, depth-first enumeration of possible models

Local search
– Similarly,Min-Conflicts for CSPs, using an evaluation func-

tion that counts the number of unsatisfied clauses
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DPLL

DPLL: a complete backtracking algorithm
– improving TT-Entail

• Early termination: a clause is true if any literal is true
E.g., (A ∨ B) ∧ (A ∨ C) is true if A is true, regardless B, C

• Pure symbol heuristic: a pure symbol appears with the same “sign”
in all clauses

E.g., (A ∨ ¬B), (¬B ∨ ¬C), (C ∨ A)
A (only positive appears) and B are pure, C is impure

A sentence has a model → it has a model with the pure symbols
assigned so as to make their literals true

• Unit clause heuristic: a unit clause with just one literal, with esp.
clauses in which all literals but one are already assigned false

E.g., if B = true , then (¬B ∨ ¬C) simplifies to ¬C
assigning one unit clause can create another one (unit propagation)
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DPLL algorithm#

def DPLL-Satisfiable?(s)

inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s

symbols← a list of the proposition symbols in s

return DPLL(clauses, symbols, [ ])

def DPLL(clauses, symbols,model)

if every clause in clauses is true in model then return true

if some clause in clauses is false in model then return false

P, value←Find-Pure-Symbol(symbols, clauses,model)

if P is non-null then return DPLL(clauses, symbols – P,model ∪ {P = value})

P, value←Find-Unit-Clause(clauses,model)

if P is non-null then return DPLL(clauses, symbols – P,model ∪ {P = value})

P←First(symbols); rest←Rest(symbols)

return DPLL(clauses, rest,model ∪ {P = value}) or

DPLL(clauses, rest,model ∪ {P = value})
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Logic programming∗

Computation as inference on logical KBs

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork, US) than x := x+2
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Prolog∗

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation prlinect)
Compilation techniques ⇒ approaching a billion LIPS

Program = set of clauses = head :- literal1, . . . literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3

Closed-world assumption (“negation as failure”)
e.g., given alive(X) :- not dead(X).

alive(joe) succeeds if dead(joe) fails
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Example: Prolog program∗

Depth-first search from a start state X

dfs(X) :- goal(X).

dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third

append([],Y,Y).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?

answers: A=[] B=[1,2]

A=[1] B=[2]

A=[1,2] B=[]
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Answer set programming (ASP)∗

Rule
a← b1, . . . , bm, not c1, . . ., not cn
– a (head), bi and cj (body) are atoms
– true, if all literals to the body are true: a non-negated literal bi

is true if it has a derivation, a negated one, not cj, is true if the atom
cj does not have one

Programs: finite collections of rules
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ASP vs. Prolog∗

Prolog: programming language
Need to understand Prolog’s evaluation strategy, SLD resolution

with unification
– the order of rules in a Prolog program and of subgoals (literals)

in rule bodies matters
– Prolog misses true declarativity

ASP: specifications (yet do not allow the programmer to control the
search)

– more declarative: it is intuitive, requires less background in logic,
and its semantics is robust to changes in the order of literals in rules
and rules in programs

– the ground program is fixed and only the data component
changes
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Automated theorem provers

Stanford Resolution Prover/FOL: one of the most mature subfields
of ATP

E-prover (E 2.3, github.com/eprover): one of the SOTA FOL /w
equality prover

TPTP (Thousands of Problems for Theorem Provers) problem library

CADE ATP System Competition (CASC): a yearly competition of
first-order systems

Proof assistant (interactive theorem prover): a software tool to assist
with the development of formal proofs by human-machine collabora-
tion

— LEAN, Coq, HOL, Isabelle, etc.
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LEAN∗

Input: a formal language for expressing math statements (defini-
tions, axioms, conjectures, theorems, and constructions) in a human-
readable and machine-verifiable format

Proof assistant: LEAN serves as a proof assistant, allowing users
to interactively develop and verify math proofs (correctness and con-
sistency)

Automated reasoning: the resolution-based automated reasoning
engine is used to automate the process of proof

Proof checking: The resolution-based proofs are checked for cor-
rectness and consistency

Output: Upon successful verification, LEAN provides formalized
math theorems and constructions, along with their proofs, in a machine-
verifiable format
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